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Abstract

We propose a novel unbalanced optimal trans-
port (UOT) formulation that has the potential
to alleviate the curse of dimensionality. The
key idea is borrowed from recent developments
of the projection robust Wasserstein distance,
which projects the sampled data onto lower-
dimensional subspace and computes the Wasser-
stein distance between the projected data. Using
the same idea, we propose the projection robust
UOT, which is a max-min problem over Stiefel
manifold. We propose two algorithms for solv-
ing this problem and analyze their complexity for
obtaining an ϵ-stationary point. Numerical ex-
periments on both synthetic and real datasets are
conducted to demonstrate the advantages of our
new UOT formulation in high-dimensional cases.

1 Introduction

Optimal transport (OT) can be used to measure the distance
of two probability distributions, which is called the Wasser-
stein distance. Recently, OT has drawn great attention due
to its applications in model machine learning, such as the
stationary Markov chain (O’Connor et al., 2022), repre-
sentation learning (Ozair et al., 2019), manifold alignment
(Demetci et al., 2022), graph attention model (Salimans
et al., 2018) and domain adaptation (Damodaran et al.,
2018). One issue about the OT is that it requires that the
total mass of the two input measures should be equal. Thus
the applicability of OT is greatly limited in scenarios where
the measures have different masses or when they contain
outliers. Many tasks have been solved efficiently by un-
balanced optimal transport (UOT), for example, domain
adaptation (Fatras et al., 2021), large scale imaging regu-
larization (Lee et al., 2019) and image translation (Zhan
et al., 2021); or researchers have mentioned developing a
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UOT architecture in their future work to handle the outliers,
like multi-omics alignment (Demetci et al., 2022). These
tasks are widely across computational biology, computa-
tional imaging, deep learning, and machine learning which
reveals the significance of the UOT problem.

Motivated by the limitations of OT, the unbalanced op-
timal transport (UOT) has recently been proposed (Ben-
amou, 2003) for computing the optimal transport between
two measures of possibly different masses. It is a relaxation
of the Kantorovich formulation which places penalty func-
tions on the marginal distributions based on some given di-
vergences (Liero et al., 2018).

A significant barrier to the direct application of OT or UOT
lies in the estimation of high-dimensional Wasserstein dis-
tances. It is well known that the sample complexity of ap-
proximating Wasserstein distances between measures using
only samples can grow exponentially in dimension (Dud-
ley, 1969). Practitioners have long been aware of this issue
of the curse of dimensionality in OT. There have been many
attempts to mitigate the curse of dimensionality. Among
them, one approach that was proposed recently is the sliced
approximation of OT (Rabin et al., 2011). The sliced ap-
proximation of OT suggests projecting the sampled data to
a given line and uses the Wasserstein distance between the
projected data as an approximation to the Wasserstein dis-
tance between the two original distributions. In more re-
cent papers, Niles-Weed and Rigollet (2019) and Paty and
Cuturi (2019) propose to project the sampled data onto a
lower-dimensional subspace and then compute the Wasser-
stein distance between the projected data. This model is
called the projection robust Wasserstein (PRW) distance.
As proved in Niles-Weed and Rigollet (2019), PRW indeed
reduces the sample complexity and resolves the issue of
the curse of dimensionality for a particular model named
the spiked transport model.

Because it is reasonable to believe that the UOT inherits
from OT the issue of the curse of dimensionality, encour-
aged by the success of PRW in OT, we propose to incorpo-
rate the projection robust idea to UOT, and this leads to our
projection robust Wasserstein distance on unbalanced op-
timal transport (PRUOT) model. Our contributions in this
paper can be summarized as follows.
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• We propose the PRUOT model that can potentially
mitigate the curse of dimensionality of UOT.

• We propose two algorithms for solving the PRUOT
model: Riemannian Gradient Ascent with Sinkhorn
(RGAS) and Riemannian Block Coordinate Descent
(RBCD). We analyze the complexity of RGAS for ob-
taining an ϵ-stationary point. We also discuss the dif-
ficulty of analyzing the convergence of RBCD.

• We conduct numerical experiments to evaluate our al-
gorithms on both synthetic and real datasets. The re-
sults show that the proposed model and algorithms can
indeed mitigate the curse of dimensionality of UOT,
and the proposed model is more robust than the origi-
nal UOT model.

The rest of this paper is organized as follows. In Section
2, we briefly review the projection robust OT problem and
some necessary backgrounds of Riemannian optimization.
In Section 3, we introduce our PRUOT and discuss its opti-
mality condition. In Section 4, we analyze the complexity
of RGAS for obtaining an ϵ-stationary point of PRUOT. We
also discuss the difficulty of analyzing the convergence of
RBCD. In Section 5, we present numerical results on both
synthetic and real datasets to demonstrate the advantages
of PRUOT compared to UOT. We show that the PRUOT
model indeed has the potential to mitigate the curse of di-
mensionality and is more robust to noise. Finally, we draw
some conclusions in Section 6.

2 Projection Robust Optimal Transport

In this section, we review projection robust OT and basics
of Riemannian optimization.

2.1 Projection Robust OT

Let {x1, x2 . . . , xn} with xj ∈ Rd, j = 1, . . . , n and
{y1, y2 . . . , yn} with yj ∈ Rd, j = 1, . . . , n denote two
sets of data points. We use ∆n to denote the proba-
bility simplex set, i.e., ∆n = {x ∈ Rn |

∑
i xi =

1, x ≥ 0}. We use r = (r1, r2, . . . , rn) ∈ ∆n and
c = (c1, c2, . . . , cn) ∈ ∆n to denote the two weight vec-
tors. We denote

∑n
i=1 ri = α,

∑n
j=1 ci = β. We de-

fine discrete probability measures µn :=
∑n

i=1 riδxi
and

νn :=
∑n

j=1 cjδyj
. Here δx denotes the Dirac delta func-

tion at x. The Wasserstein distance between µn and νn is
defined as:

W2(µb, νn) := min
π∈Π(µn,νn)

⟨C, π⟩, (1)

where the transportation polytope Π(µn, νn) :={
π ∈ Rn×n

+ |π1 = r, πT1 = c
}

, and 1 denotes the n-
dimensional all-one vector. Throughout the paper,

C ∈ Rn×n denotes the matrix whose (i, j)-th component
is Cij = ∥xi − yj∥2.

The projection robust Wasserstein distance is defined as
follows (see Paty and Cuturi (2019)):

P2
k(µb, νn) := max

U∈M
min

π∈Π(µn,νn)
f(π, U), (2)

where U ∈ Rd×k denotes an orthonormal basis of the k-
dimensional subspace, f(π, U) :=

∑n
i,j=1 πij∥UTxi −

UT yj∥2,M := {U ∈ Rd×k | U⊤U = Ik} is the Stiefel
manifold. Note that ∥UTxi − UT yj∥2 is the distance be-
tween the projected xi and yj . It is very challenging to
solve (2). In practice, it is suggested to solve the follow-
ing entropy regularized version of (2) (see Paty and Cuturi
(2019)):

max
U∈M

min
π∈Π(µn,νn)

n∑
i,j=1

πij∥UTxi − UT yj∥2 − ηH(π),

(3)
where η > 0 is a penalty parameter, H(π) := −⟨π, log π−
11T ⟩ is the entropy function. This is called the projection
robust OT (PROT) problem. Recently, Lin et al. (2020)
proposed a Riemannian gradient method to compute the
(2). More specifically, they proposed the RGAS (Rie-
mannian Gradient Ascent with Sinkhorn Iteration) algo-
rithm for solving (3). RGAS requires to solve an entropy-
regularized OT problem in every iteration, which can be
time consuming. More recently, Huang et al. (2021) pro-
posed the RBCD (Riemannian Block Coordinate Descent)
algorithm which has a much lower per-iteration complexity
compared to RGAS (Lin et al., 2020).

2.2 Basics of Riemannian Optimization

Now we review some important concepts in Riemannian
optimization.

Definition 2.1 (Absil et al., 2009) The tangent space ofM
at U ∈M is defined as

TUM ={η′(0) : γ is a smooth curve with

γ(0) = U, η([−w,w] ⊂M, w > 0)}.
(4)

The tangent bundle is defined as

TM := {(U, ξ) : U ∈M, ξ ∈ TUM}.

For the Stiefel manifoldM, its tangent space at point U ∈
M can be written as:

TUM := {ξ ∈ Rd×k : ξTU + UT ξ = 0}.

We considerMwith Riemannian metric inherited from the
Euclidean inner product. Therefore, for any ξ, η ∈ TUM,
we have ⟨ξ, η⟩U = Tr(ξT η). Moreover, in this case, the
Riemannian gradient of f is the orthogonal projection of
the Euclidean gradient onto the tangent space; i.e.,

gradf(U) = ProjTUM∇f(U).
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Definition 2.2 (Absil et al., 2009) A retraction onM is a
smooth mapping Retr(·) from the tangent bundle TM onto
M satisfying the following two conditions:

(1) RetrU (0) = U,∀U ∈ M, where 0 denotes the zero
element of TUM;

(2) For any U ∈M, it holds that

lim
ξ∈TUM,ξ→0

∥RetrU (ξ)− (U + ξ)∥F
∥ξ∥F

= 0.

3 Projection Robust UOT

In this section, we introduce our projection robust UOT
model. UOT is proposed to measure the distance between
two measures of possibly different masses. It is a relax-
ation which replaces the marginal linear constraints with
divergence penalty functions. Computing the Wasserstein
distance between two measures µ and ν under UOT setting
is equivalent to

min
π∈Rn×n

+

f(π)

where

f(π) := ⟨C, π⟩+ τKL(π1∥r) + τKL(πT1∥c). (5)

Here, π is a transportation plan and τ > 0 is a given reg-
ularization parameter. The KL-divergence between vector
x and y is defined as

KL(x∥y) :=
n∑

i=1

xi log

(
xi

yi

)
− xi + yi.

When rT1 = cT1 and τ → ∞, the UOT problem (5)
reduces to the standard OT problem.

Because UOT ia a relaxation of OT, it is reasonable to ex-
pect that the UOT will inherit from OT the curse of dimen-
sionality issue. To mitigate the curse of dimensionality, we
propose the PRUOT model which can be formulated as fol-
lows:

max
U∈M

min
π∈Rn×n

+

f(π, U) :=

n∑
i=1

n∑
j=1

πi,j∥UTxi − UT yj∥2

+ τKL(π1n∥r) + τKL(πT1n∥c).
(6)

Here similar to projection robust OT (3), the matrix U de-
notes an orthonormal basis of the subspace which the sam-
pled data are projected onto. Again, we can add an entropy
regularization term to make the problem easier to solve.
This leads to the following problem:

max
U∈M

min
π∈Rn×n

+

g(π, U) :=

n∑
i=1

n∑
j=1

πi,j∥UTxi − UT yj∥2

+ τKL(π1∥r) + τKL(πT1∥c)− ηH(π).
(7)

We refer to (7) as the entropy regularized projection robust
UOT. We now define the ϵ-optimal solution to UOT and
ϵ-stationary point for PRUOT.

Definition 3.1 For any ϵ > 0, we call π and ϵ-
approximation transportation plan if the following holds

⟨C, π⟩+ τKL(π1∥r) + τKL(πT1∥c) ≤
⟨C, π̂⟩+ τKL(π̂1∥r) + τKL(π̂T1∥c) + ϵ,

where π̂ is an optimal solution to the UOT problem (5).

Definition 3.2 We call (π̂, Û) ∈ Rn×n
+ ×M an (ϵ1, ϵ2)-

stationary point of the PRUOT problem (6), if the following
two inequalities hold:

∥gradUf(π̂, Û)∥F ≤ ϵ1,

f(π̂, Û)− min
π∈Rn×n

+

f(π, Û) ≤ ϵ2.

3.1 Quantities

Table 1: Quantities mentioned in the lemmas.
γ 1

K((8L2
1+16L2)∥C∥∞+16η−1L2

1∥C∥2∞)

S 1
2
(α+ β) + 1

2
+ 1

4 log(n)

D
(
α+β
2

) [
log

(
α+β
2

)
+ 2 log(n)− 1

]
+ log(n) + 5

2

J max
{
S +D, 2ϵ2,

4ϵ2 log(n)
τ

, 4ϵ2(α+β) log(n)
τ

}
R

max {∥ log(r)∥∞, ∥ log(c)∥∞}
+max

{
log(n), 1

η
∥C∥∞ − log(n)

}

4 Riemannian Optimization Algorithms for
Solving PRUOT

We discuss two algorithms for solving PRUOT (6):
Riemannian Gradient Ascent with Sinkhorn’s Iteration
(RGAS) (Lin et al., 2020) and Riemannian Block Coordi-
nate Descent (RBCD) (Huang et al., 2021).

4.1 RGAS

The RGAS was first proposed in Lin et al. (2020) for solv-
ing the entropy-regularized PROT (3). The RGAS for solv-
ing (3) can be described as follows. First, we denote

fη(U) := min
π∈Π(µn,νn)

n∑
i,j=1

πij∥UTxi−UT yj∥2− ηH(π),

(8)
then the entropy-regularized PROT (3) is equivalent to

max
U∈M

fη(U).



Projection Robust Optimal Transport Between Unbalanced Distributions

This can be solved by Riemannian gradient ascent because
fη is smooth with respect to U . However, to compute the
Riemannian gradient of fη for a fixed U , one needs to solve
the optimization problem in (8) using the Sinkhorn’s algo-
rithm, and this leads to the RGAS algorithm. A typical it-
eration of RGAS algorithm for solving entropy-regularized
PROT (3) is given below.

(i) run Sinkhorn’s algorithm to solve (8) with U = U t

to obtain π∗(U t)

(ii) U t+1 := RetrUt(τtgradfη(U
t)).

We can apply the same idea to solve the entropy-
regularized PRUOT (7). For UOT problem, we can for-
mulate the entropic regularized UOT by Fenchel-Legendra
dual (Pham et al., 2020), which is given by

max
u,v∈Rn

−F ∗(−u)−G∗(−v)− η
∑
i,j

exp(
ui + vi − Cij

η
),

where the functions F ∗(•) and G∗(•) take the following
forms:

F ∗(u) = max
z∈Rn

zTu− τKL(z∥r) = τ⟨eu/τ , r⟩ − rT1n

G∗(u) = max
x∈Rn

xT v − τKL(x∥c) = τ⟨ev/τ , c⟩ − cT1n

With this formulation, we can solve UOT problem by Sin-
horn iterations at each inner loop and run Riemannian gra-
dient ascent at the outer loop. Therefore, we compute Eq.
(7) by Algorithm 2 and the inner maximization problem is
solved as shown in Algorithm 1.

Algorithm 1 UOT-SINKHORN(C, ϵ)
1: Input: h = 0, u0 = v0 = 0 and η = ϵ

J .
2: while h ≤ ( τJϵ + 1)[log(8ηR) + log(τ(τ + 1)) +

3 log(Jϵ )] do
3: ah = π(uh, vh)1n

4: bh = π(uh, vh)T1n

5: if h is even then
6: uh+1 = [u

h

η + log(r)− log(ah)] ητ
η+τ

7: vh+1 = vh

8: else
9: vh+1 = [v

h

η + log(c)− log(bh)] ητ
η+τ

10: uh+1 = uh

11: end if
12: h = h+ 1
13: end while
14: return π(uh, vh).

Theorem 4.1 Letting {(Ut, πt)}t≥1 be the iterates gener-
ated by Algorithm 2, the number of iterations t required
for the outer loop to reach ∥gradUt

f(πt, Ut)∥F ≤ ϵ1 sat-
isfies that t ≤ 100∆f

γ(25ϵ12−3ϵ22) where γ is defined in Table

Algorithm 2 RGAS-UOT(C, ϵ)

1: Input: {(xi, ri)}i∈[n], {(yi, ci)}j∈[n], k = Õ(1),
U1 ∈M, ϵ, and α ∈ (0, 1).

2: for t = 1, 2, . . . do
3: Compute Ct

4: Compute πt+1 ← UOT-SINKHORN(Ct, ϵ)
5: Compute ξt+1 ← PTUtSt

(Vπt+1Ut)
6: Compute Ut+1 ← RetrUt(γξt+1)
7: end for

1. For the inner loop which updates π by Sinkhorn al-
gorithm, Pham et al. (2020) gave the results on its con-
vergence. For inner iteration k = ( τJϵ2 + 1)[log(8ηR) +

log(τ(τ + 1)) + 3 log( J
ϵ2
)] and η = ϵ2

J , the update πk sat-
isfies that f(π̂, Û)− f(πk, Û) ≤ ϵ2.

4.2 RBCD on UOT

RBCD solves the entropic regularized OT based on a new
reformulation of the original problem. It formulates the
problem as a minimization problem among the Sinkhorm
updating vector u, v, and the manifold U , and updates the
three block variables (u, v, U) consecutively in each itera-
tion. The pseudocode of the algorithm is shown in Algo-
rithm 3. One thing different between RBCD and RBCD-
UOT is that the projection of π on the polytope Π(µ, ν)
is removed because we no longer consider the linear con-
straints for PRUOT model.

Compared to RGAS-UOT, RBCD-UOT also updates the
inner minimization problem by the Sinkhorn algorithm
but only once in each iteration instead of multiple times.
Therefore, RBCD-UOT is more efficient in practice which
will be shown in the late numerical experiments.

Algorithm 3 RBCD-UOT(C, ϵ)
1: Input: U0 ∈ M, u0, v0 ∈ Rn, and accuracy tolerance

ϵ1, ϵ2 > 0.
2: for t = 1, 2, . . . do
3: at = π(ut, vt, U t)1n

4: ut+1 = [u
t

η + log(r)− log(at)] ητ
η+τ

5: bt = π(ut+1, vt, U t)T1n

6: vt+1 = [v
t

η + log(c)− log(bt)] ητ
η+τ

7: Compute πt+1(ut+1, vt, U t) and Vπt+1

8: Compute ξt+1 ← PTUtSt
(Vπt+1

Ut)
9: Compute Ut+1 ← RetrUt

(γξt+1)
10: end for

Remark 4.1 Since we can formulate the entropic regular-
ized UOT as the following Fenchel-Legendre dual form. It
is equivalent to finding the optimal solution for the follow-
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ing objective function:

min
U∈M,u,v∈Rn

η

n∑
i,j=1

exp

(
ui + vj − ∥UTxi − UT yj∥2

η

)
+ τ⟨e v

τ , c⟩+ τ⟨eu
τ , r⟩.

(9)

The main difficulty to prove the convergence of RBCD-UOT
is to show that the updating of U can decrease the Eq. 9.
This part of the proof fails because the first term which con-
tains the exponential of U cannot converge in this formula-
tion.

5 Numerical Experiments

In this section, we first study the ability of the two pro-
posed algorithms, RGAS-UOT and RBCD-UOT, to over-
come the curse of dimensionality. We then evaluate the per-
formance of the two algorithms on calculating the PRUOT
distance for both synthetic and real datasets following the
experiment setup in Paty and Cuturi (2019) and Lin et al.
(2021). The baseline approach is the Sinkhorn algorithm
that solves the entropic regularized Unbalanced Optimal
Transport (UOT) problem proposed in Pham et al. (2020).
All experiments in this section are implemented in Python
3.7 on a Linux server with a 6-core Intel Xeon CPU (E5-
2630 v2 @ 2.60GHz).

5.1 Alleviating the curse of dimensionality

Our first experiment shows that our formulation of UOT
can overcome the curse of dimensionality. We focus on
the fragmented hypercube, which is adapted from Paty and
Cuturi (2019); Lin et al. (2020). In particular, we consider
a uniform distribution over a hypercube µ = U([−1, 1]d)
and a pushforward ν = T#µ defined under the map
T (x) = x + 2sign(x) ⊙ (

∑k∗

k=1 ek). Note that sign(·)
is taken element-wise, k∗ ∈ [d] and (e1, . . . , ed) is the
canonical basis of Rd. By the definition, T divides the
hypercube into 2k

∗
different hyper-rectangles, as well as

serves as a subgradient of the convex function. This to-
gether with Brenier’s theorem (Brenier, 1991) implies that
T is an optimal transport map between µ and ν = T#µ
with W2

2(µ, ν) = 4k∗. In this case the displacement vec-
tor T (x)x lies in the k∗-dimensional subspace spanned
by {ej}j∈[k∗]. Putting these pieces together yields that
P2
k(µ, ν) = 4k∗ for any k ≥ k∗. Moreover, in this case we

have U∗ ∈ St(d, k∗) with U∗(1 : k∗, 1 : k∗) = Ik∗ . For
all experiments below, unless specified, we set parameters
as τ = 100, η = 0.2, ϵRGAS−UOT = ϵRBCD−UOT = 0.1,
γRGAS−UOT = γRBCD−UOT /η, and γRBCD−UOT =
0.001.

In this experiment, we set k∗ = 2 and plot the number
of data and computation time (in seconds) required by dif-
ferent algorithms to achieve a fixed mean estimation error

for different total dimensions d ∈ [2, 13]. We define the
mean estimation error as MEE = P2

k(µ̂, ν̂)− 4k∗ for the
PRUOT distance and MEE = W2

k(µ̂, ν̂) − 4k∗ for UOT
distance. Figure 1 and Figure 2 show that the required sam-
ple size of ordinary UOT formulation grows exponentially
with respect to the total dimension d while our formula-
tion of UOT does not display such behavior. We further
plot Figure 2, which depicts the time needed by each algo-
rithm to achieve an MEE of 1. In particular, we run each
algorithm with increasing dimension d using the required
number of data points reported in Figure 1 for each dimen-
sion. We discover that for obtaining a fixed error rate, our
formulation of UOT, especially with the RBCD-UOT algo-
rithm, is significantly faster than the ordinary formulation
of UOT. The results demonstrate that our formulation of
UOT can significantly alleviate the curse of dimensional-
ity.

Figure 1: The number of samples required to achieve MEE
= 1. The shaded areas represent the min and max quantiles
over 3 repeated experiments. The required sample size of
ordinary UOT formulation grows exponentially while our
formulation of UOT does not.

Figure 2: Computation time required to achieve MEE = 1.
The shaded areas represent the min and max quantiles over
3 repeated experiments. For obtaining a fixed error rate,
our formulation of UOT, especially with the RBCD-UOT
algorithm, is significantly faster than the ordinary UOT.

5.2 Performance comparable to ordinary UOT

Using the fragmented hypercube setting in Experiment
5.1, we demonstrate that the performance of PRUOT is
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comparable if not better than the ordinary UOT. Fig-
ure 3 and Figure 4 presents the mean estimation error
(MEE) and mean subspace estimation error (MSE) as de-
fined in Experiment 5.1 for a different choice of n ∈
{25, 50, 100, 250, 500, 1000}. We set k∗ = 2, d = 30 and
the subspace projection is calculated as Ω = Û ÛT in each
run. The quality of solutions obtained by the RGAS-UOT
and RAGAS-UOT algorithms are roughly the same and are
better than the ordinary formulation of UOT.

In Figure 5 we plot the optimal transport plans between
(µ̂, ν̂) generated by the UOT distance and the PRUOT dis-
tance calculated by the RGAS-UOT and RBCD-UOT algo-
rithms. We considered the case when k∗ = 2, d = 30 and
n ∈ 100, 250. From Figure 5 we see that in both cases, our
formulation of UOT can generate almost the same trans-
port plans as the ordinary formulation of UOT, and the two
proposed algorithms produce similar results.

Figure 3: Mean estimation error with the varying number
of points n. The shaded area shows the 10%-90% and 25%-
75% quantiles over 10 repeated experiments. PRUOT has
a lower error rate than UOT.

Figure 4: Mean subspace estimation error with the varying
number of points n. The shaded area shows the 10%-90%
and 25%-75% quantiles over 10 repeated experiments.

5.3 More robust to noise

In this experiment we consider µ = N (0,Σ1) and ν =
N (0,Σ2) with Σ1,Σ2 ∈ Rd×d are positive semidefinite
matrices of rank k∗. This implies that the support of µ
and ν are k∗-dimensional subspace of Rd. Although the
supports of µ and ν can be different, their union is included

in a 2k∗-dimensional subspace. Therefore, for any k ≥
2k∗, P2

k(µ, ν) = W2
2(µ, ν). In our experiment, we sample

10 independent couples of covariance matrices (Σ1,Σ2) in
dimension d = 20, where each has independently a Wishart
distribution with k∗ = 5 degrees of freedom. For each pair
of matrices, we construct the empirical measures µ̂, ν̂ by
drawing n = 100 points from N (0,Σ1) and N (0,Σ2).

Figure 6 presents the mean value of P2
k(µ, ν)/W2

2(µ, ν)
over 10 experiments with varying k. We set η = 1.3 and
use RGAS-UOT for this experiment. We plot the curves for
both noise-free and noisy data, where we add a white noise
(N (0, Id)) to each data point. We calculate the PRUOT
distance with the RGAS-UOT algorithm. With moderate
noise, the data is approximately on the two 5-dimensional
subspaces, and PRUOT distances do not vary too much.
Our results are consistent with the result presented in Paty
and Cuturi [Paty and Cuturi (2019), Figure 6], indicating
that the PRUOT distance is also robust to random noise.

Figure 7 is the comparison of mean relative errors over 10
samples as the noise level varies. In particular, we consider
10 independent samples of couples Σ1,Σ2 ∈ Rd×d similar
to the above experiment and gradually add Gaussian noise
σN (0, Id) to the points to construct the empirical measures
µ̂σ and ν̂σ . We set the regularization parameter as η = 1.3
when noise level ≤ 3 and η = 7 otherwise. For the relative
errors of the Wasserstein, UOT, and PRUOT distances, we
follow the definition in Paty and Cuturi [Paty and Cuturi
(2019), Section 6.3]. We see that when the noise has a
moderate to high variance, the PRUOT distance is more
robust to noise compared to the UOT distance.

5.4 Computational complexity

We conduct our third experiment on the fragmented hyper-
cube with increasing dimension d and fixed k∗ = 2. We
set ϵ = 0.1, and k = 2 . For the PRUOT distances, we set
the regularization parameter as η = 0.2 when d ≤ 250 and
η = 0.5 otherwise. We stop the RGAS-UOT and RAGAS-
UOT algorithms when ∥gradp(U t)∥F ≤ ϵ

Figure 8 presents the mean computation time of the
PRUOT distance with the RGAS-UOT and RBCD-UOT al-
gorithms and the UOT distance with Sinkhorn algorithm
(Pham et al., 2020). We see that for a fixed number of
points n, the PRUOT algorithms are slower than UOT al-
gorithm due to the computation of Rieman steps. However,
recall that in Experiment 5.1, we show that for obtaining
a fixed error rate, our formulation of UOT, especially with
RBCD-UOT algorithm, is significantly faster than the ordi-
nary formulation of UOT.

5.5 Experiments on real data

We consider a corpus of seven movie scripts that were used
in Paty and Cuturi (2019). Each script is tokenized to a
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Figure 5: Fragmented hypercube with (n, d) = (100, 30) (above) and (n, d) = (250, 30) (bottom). Optimal mappings
are calculated by UOT (left), PRW distance is calculated by RGAS-UOT (middle), and PRW is calculated by RBCD-UOT
(right).

Figure 6: Mean normalized PRUOT distance depending on
the dimension. The shaded area shows the 10%-90% and
25%-75% quantiles over the 10 runs.

Figure 7: Comparison of mean relative errors over 10 runs
depending on the noise level. The shaded area shows the
10%-90% and 25%-75% quantiles.

list of words, which is transformed to a measure over R300

using word2vec (Mikolov et al., 2018) where the weights

Figure 8: Comparisons of mean computation times on CPU
with the number of points n = 100. The shaded areas show
the minimum and maximum values over 10 runs.

correspond to word frequency. We set k = 2, η = 0.1, γ =
0.08 and compute the PRUOT distances between all pairs
of movies as shown in Table 3. The results indeed reveal
very useful information about the datasets. For example,
from Table 3 we know that the movies “Dunkirk” and “Ti-
tanic” are close, and “Kill Bill Vol.1” and “Kill Bill Vol. 2”
are close because their PRUOT distances are small.

6 Conclusion

In this paper, we propose a new model which solves un-
balanced optimal transport by projection robust Wasser-
stein distance. We analyze the effectiveness of Rieman-
nian gradient ascent with Sinkhorn (RGAS) and Rieman-
nian Block Coordinate Descent (RBCD) under unbalanced
optimal transport. Furthermore, we show the complexity
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Table 2: Each entry is the PRUOT distance between differ-
ent movie scripts. Bold values correspond to the minimum
of each line. D = Dunkirk, G = Gravity, I= Interstellar, KB1
= Kill Bill Vol.1, KB2 = Kill Bill Vol.2, TM = The Martian,
T = Titanic.

D G I KB1 KB2 TM T
D 0.000 0.114 0.130 0.135 0.124 0.116 0.101
G 0.114 0.000 0.097 0.137 0.150 0.088 0.102
I 0.130 0.097 0.000 0.128 0.140 0.096 0.113

KB1 0.135 0.137 0.128 0.000 0.083 0.107 0.107
KB2 0.124 0.150 0.140 0.083 0.000 0.136 0.111
TM 0.116 0.088 0.096 0.107 0.136 0.000 0.096
T 0.101 0.102 0.113 0.107 0.111 0.096 0.000

of arithmetic operations for RGAS to obtain an ϵ-stationary
point. Numerical results on both synthetic and real datasets
demonstrate that the new model strongly addresses the
curse of dimensionality for the UOT problem and is more
robust to noise.
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7 MISSING PROOFS

First we list the quantities that will be mentioned in the following proof.

R = max {∥ log(r)∥∞, ∥ log(c)∥∞}+max

{
log(n),

1

η
∥C∥∞ − log(n)

}
,

H =

(
1

2
+

η log (n)

2τ − 2η log (n)

)
(α+ β) +

1

6 log (n)
,

γ =
1

H∥C∥∞(8L2
1 + 16L2) + 16(η + 2τ)−1L2

1∥C∥2∞
,

S =
1

2
(α+ β) +

1

2
+

1

4 log(n)
,

D =

(
α+ β

2

)[
log

(
α+ β

2

)
+ 2 log(n)− 1

]
+ log(n) +

5

2
,

J = max

{
S +D, 2ϵ2,

4ϵ2 log(n)

τ
,
4ϵ2(α+ β) log(n)

τ

}
.

Define

max
U∈M

f(U) := min
π∈Rn×n

+

n∑
i,j=1

πi,j∥UTxi − UT yj∥2 + τKL(π1n∥r) + τKL(πT1n∥c)

 (10)

and

max
U∈M

fτ,η(U) := min
π∈Rn×n

+

n∑
i,j=1

πi,j∥UTxi − UT yj∥2 + τKL(π1n∥r) + τKL(πT1n∥c)− ηH(π)

 (11)

Definition 7.1 The correlation matrix between r =
∑n

i=1 riδxi
and c =

∑n
j=1 cjδyj

is defined by Vπ =∑n
i=1

∑n
j=1 πi,j(xi − yj)(xi − yj)

T ∈ Rd×d. The supplementary materials may contain detailed proofs of the results
that are missing in the main paper.

Proposition 7.1 Boumal et al. (2019) For all Z ∈ St ≡ St(d, k) and ξ ∈ TZSt, there exists constants L1 > 0 and L2 > 0
such that the following to inequalities hold:

∥RetrZ − Z∥F ≤ L1∥ξ∥F

∥RetrZ − (Z + ξ)∥F ≤ L2∥ξ∥2F

Lemma 7.1 The function f is (α+ β) · ∥C∥∞-weakly concave.
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Proof: By Vial (Vial (1983), Proposition 4.3), it sufficies to show that the function f(U)−
(

α+β
2

)
·∥C∥∞∥U∥2F is concave

for any U ∈M. By the definition of f , we have

f(U) = min
π∈Rn×n

+

Trace(UTVπU) + τKL(π1n∥r) + τKL(πT1n∥c).

Define π̂(U) := argminπ∈Rn×n
+

{
Trace

(
UTVπU

)
+ τKL(π1n∥r) + τKL(πT1n∥c)

}
and x̂(U) =∑n

i=1

∑n
j=1 π̂i,j(U) for some fixed U . Therefore,

f(U) = Trace(UTVπ̂(U)U) + τKL(π̂(U) · 1n∥r) + τKL(π̂(U)T · 1n∥c).

By Corollary 2 in Pham et al. (2020), we have x̂(U) ≤ α+β
2 . Therefore, we define the space of π that satisfies this constraint

as Π
(

α+β
2

)
which is a semi-hypersphere of dimension Rn×n

+ . Putting these pieces together with Jensen’s inequality, we
have

∥Vπ∥F ≤
n∑

i=1

n∑
j=1

πi,j∥(xi − yj)(xi − yj)
T ∥F ≤ max

1≤i,j≤n
∥xi − yj∥2 ·

(
α+ β

2

)
=

(
α+ β

2

)
· ∥C∥∞

This implies that U → Trace(UTVπU) + τKL(π1n∥r) + τKL(πT1n∥c) −
(

α+β
2

)
· ∥C∥∞∥U∥2F is concave for any

π ∈ Π
(

α+β
2

)
. Since Π

(
α+β
2

)
is compact, Danskin’s theorem Rockafellar (1970) implies the desired result.

Lemma 7.2 Each element of the subdifferential ∂f(U) is bounded by (α+ β) · ∥C∥∞ for all U ∈ St(d, k).

Proof: By the definition of the subdifferential ∂f , it suffices to show that ∥VπU∥F ≤
(

α+β
2

)
·∥C∥∞ for all π ∈ Π

(
α+β
2

)
and U ∈ St(d, k). Indeed, by the definition, Vπ is symmetric and positive semi-definite. Therefore, we have

max
U∈St(d,k)

∥VπU∥F ≤ ∥Vπ∥F ≤
(
α+ β

2

)
· ∥C∥∞.

Putting these pieces together implies the desired result.

We present the Riemannian gradient ascent with Sinkhorn on Unbalaned Optimal Transport (RGAS-UOT) algorithm for
solving Eq. (11). By the definition of Vπ , we can rewrite

fτ,η(U) = min
π∈Rn×n

+

{
⟨UUT , Vπ⟩+ τKL(π1n∥r) + τKL(πT1n∥c)− ηH(π)

}
.

Fix U ∈ Rd×k, and define the mapping π → ⟨UUT , Vπ⟩ + τKL(π1n∥r) + τKL(πT1n∥c) − ηH(π) with respect to
l1-norm. Danskin’s theorem Rockafellar (1970) implies that fτ,η(U) is smooth. Moreover, by the symmetry of Vπ , we
have

∇fτ,η(U) = 2Vπ∗(U)U for any U ∈ Rd×k,

where π∗(U) := argminπ∈Rn×n
+

{
⟨UUT , Vπ⟩+ τKL(π1n∥r) + τKL(πT1n∥c)− ηH(π)

}
. Define x∗(U) =∑n

i=1

∑n
j=1 π

∗
i,j(U) for some fixed U . This entropic regularized UOT is solved at each inner loop of the maximiza-

tion and we use the output πt+1 ≈ π(Ut) to obtain an inexact gradient of fτ,η . The stopping criterion used here is set as
∥πt+1 − π(Ut)∥1 ≤ ϵ̂ which implies that πt+1 is ϵ-approximate optimal transport plan for Ut ∈ St(d, k).

The remaining issue is to approximately solve an entropic regularized UOT efficiently. We leverage the approach in
Pham et al. (2020) and obtain the desired output πt+1 for Ut ∈ St(d, k) using the Sinkhorn iteration between unbalanced
distributions. By adapting the proof presented by Pham et.al. (Pham et al. (2020), Theorem 2), we derive that Sinkhorn
iteration achieves a finite-time guarantee.,
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We first show that fτ,η is continuously differentiable over Rd×k and the classical gradient inequality holds true over
St(d, k). The derivative is novel and uncovers the structure of the computation of entropic regularized PRW. Let g :
Rd×k × Rn×n

+ → R be defined by

g(U, π) =

n∑
i=1

n∑
j=1

πi,j∥UTxi − UT yj∥2 + τKL(π1n∥r) + τKL(πT1n∥c)− ηH(π).

It is obvious that g(U, •) is strongly convex with respect to l1-norm.

Lemma 7.3 fτ,η is differentiable over Rd×k and ∥∇fτ,η(U)∥F ≤
(
(1 + η log (n)

τ−η log (n) )(α+ β) + 1
3 log (n)

)
· ∥C∥∞ for all

U ∈ St(d, k).

Proof: It is clear that we have fτ,η(•) = minπ∈Rn×n
+

g(•, π). Furthermore, π∗(•) argminπ∈Rn×n
+

g(•, π) is uniquely
defined. Putting these pieces together, Danskin’s theorem Rockafellar (1970) implies that fτ,η is continuously differentiable
and the gradient is

∇fτ,η(U) = 2Vπ∗(U)U for any U ∈ Rd×k,

By Corollary 2 Pham et al. (2020), we have x∗(U) ≤
(

1
2 + η log (n)

2τ−2η log (n)

)
(α + β) + 1

6 log (n) . Denote H =(
1
2 + η log (n)

2τ−2η log (n)

)
(α+ β) + 1

6 log (n) , there is π∗ ∈ Π(H). Since U ∈ St(d, k), we have

∥∇fτ,η(U)∥F = 2∥Vπ∗(U)U∥F ≤ 2∥Vπ∗(U)∥F ≤ 2H∥C∥∞.

This completes the proof.

Lemma 7.4 For all U1, U2 ∈ St(d, k), the following statement holds true,

|fτ,η(U1)− fτ,η(U2)− ⟨∇fτ,η(U2), U1 − U2⟩| ≤
(
H∥C∥∞ +

2∥C∥2∞
η + 2τ

)
∥U1 − U2∥2F .

Proof: It suffices to prove hat

∥∇fτ,η(αU1 + (1− α)U2)−∇fτ,η(U2)∥F ≤
(
2H∥C∥∞ +

4∥C∥2∞
η + 2τ

)
α∥U1 − U2∥F ,

For any U1, U2 ∈ St(d, k) and any α ∈ [0, 1]. Indeed, let Uα = αU1 + (1− α)U2, we have

∥∇fτ,η(Uα)−∇fτ,η(U2)∥F ≤ 2∥Vπ∗(Uα)∥F ∥Uα − U2∥F + 2∥Vπ∗(Uα) − Vπ∗(U2)∥F .

Since π∗(Uα) ∈ Π(S), we have ∥Vπ∗(Uα)∥F ≤ S∥C∥∞. By the definition of Vπ , we have

∥Vπ∗(Uα) − Vπ∗(U2)∥F ≤
n∑

i=1

n∑
j=1

|π∗
i,j(Uα)− π∗

i,j(U2)|∥xi − yj∥2 ≤ ∥C∥∞∥π∗(Uα)− π∗(U2)∥1.

Putting these pieces together yields that

∥∇fτ,η(Uα)−∇fτ,η(U2)∥F ≤ 2H∥C∥∞∥Uα − U2∥F + 2∥C∥∞∥π∗(Uα)− π∗(U2)∥1 (12)

Using the property of he enropy regularization H(•), we have g(U, •) is strongly convex with respect to l1-norm and the
module is η. This implies that

g(Uα, π
∗(U2))− g(Uα, π

∗(Uα))− ⟨∇πg(Uα, π
∗(Uα)), π

∗(U2)− π∗(Uα)⟩ ≥
η + 2τ

2
∥π∗(Uα)− π∗(U2)∥21,

g(Uα, π
∗(Uα))− g(Uα, π

∗(U2))− ⟨∇πg(Uα, π
∗(U2)), π

∗(Uα)− π∗(U2)⟩ ≥
η + 2τ

2
∥π∗(Uα)− π∗(U2)∥21.

Summing up these inequalities yields

⟨∇πg(Uα, π
∗(Uα))−∇πg(Uα, π

∗(U2)), π
∗(Uα)− π∗(U2)⟩ ≥ (η + 2τ)∥π∗(Uα)− π∗(U2)∥21. (13)
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Futhermore, by the first-order optimality condition of π∗(U1) ad π∗(U2), we have

⟨∇πg(Uα, π
∗(Uα)), π

∗(U2)− π∗(Uα)⟩ ≥ 0,

⟨∇πg(U2, π
∗(U2)), π

∗(Uα)− π∗(U2)⟩ ≥ 0.

Summing up these inequalities yields

⟨∇πg(U2, π
∗(U2))−∇πg(Uα, π

∗(Uα)), π
∗(Uα)− π∗(U2)⟩ ≥ 0. (14)

Summing up the Eq. 13 and Eq. 14 and further using Holder’s inequality, we have

∥π∗(Uα)− π∗(U2)∥1 ≤
1

η + 2τ
∥∇πg(U2, π

∗(U2))−∇πg(Uα, π
∗(U2))∥∞.

By the definition of function g, we have

∥∇πg(U2, π
∗(U2))−∇πg(Uα, π

∗(U2))∥∞ ≤ max
1≤i,j≤n

|(xi − xj)
T (U2U

T
2 − UαU

T
α )(xi − xj)|

≤
(

max
1≤i,j≤n

∥xi − yj∥2
)
∥U2U

T
2 − UαU

T
α ∥F

= ∥C∥∞∥U2U
T
2 − UαU

T
α ∥F .

Since U1, U2 ∈ St(d, k), we have

∥U2U
T
2 − UαU

T
α ∥F ≤ ∥U2(U2 − Uα)

T ∥F + ∥(U2 − Uα)U
T
α ∥F

≤ ∥U2 − Uα∥F + ∥(U2 − Uα)(αU1 + (1− α)U2)
T ∥F

≤ ∥U2 − Uα∥F + α∥(U2 − Uα)U
T
1 ∥F + (1− α)∥(U2 − Uα)U

T
2 ∥F

≤ 2∥(U2 − Uα∥F .

Putting these pieces together yields that

∥π∗(Uα)− π∗(U2)∥1 ≤
2∥C∥∞
η + 2τ

∥Uα − U2∥F . (15)

Plugging Eq. 15 into Eq. 12 yields the desired result.

Based on the lemma above, we further extend the Lemma from the worS of Lin et.al. from optimal transport problem to
unbalanced optimal transport problem Lin et al. (2020).

Lemma 7.5 Let {(Ut, π
t)}t≥1 be the iterates generated by Algorithm RGAS-UOT. We have

1

T

(
T−1∑
t=0

∥gradfτ,η(Ut)∥2F

)
≤ 4∆f

γT
+

3ϵ2

25
.

where ∆f = maxU∈St(d,k),UUT=I fτ,η(U)− fτ,η(U0) is the initial objective gap.

Proof: Using lemma 7.4 with U1 = Ut+1 and U2 = Ut, we have

fτ,η(Ut+1)− fτ,η(Ut)− ⟨∇fτ,η(Ut), Ut+1 − Ut⟩ ≥ −
(
H∥C∥∞ +

2∥C∥2∞
η + 2τ

)
∥Ut+1 − Ut∥2F . (16)

By the definition of Ut+1, we have

⟨∇fτ,η(Ut), Ut+1 − Ut⟩ =⟨∇fτ,η(Ut),RetrUt(γξt+1)− Ut⟩
= ⟨∇fτ,η(Ut), γξt+1⟩+ ⟨∇fτ,η(Ut),RetrUt(γξt+1)− (Ut + γξt+1)⟩
≥ ⟨∇fτ,η(Ut), γξt+1⟩ − ∥∇fτ,η(Ut)∥F ∥RetrUt(γξt+1)− (Ut + γξt+1)∥F

(17)
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By Lemma 7.3, we have ∥∇fτ,η(U)∥ ≤ 2H∥C∥∞. Putting these pieces with Proposition 7 yields that

⟨∇fτ,η(Ut), Ut+1 − Ut⟩ ≥ γ⟨∇fτ,η(Ut), ξt+1⟩ − 2Hγ2L2∥C∥∞∥ξt+1∥2F . (18)

Using Proposition 7 again, we have

∥Ut+1 − Ut∥2F = |RetrUt(γξt+1)− Ut∥2F ≤ γ2L2
1∥ξt+1∥2F . (19)

Combining Eq. 16, Eq. 18 and Eq. 19 yields

fτ,η(Ut+1)− fτ,η(Ut) ≥ γ⟨∇fτ,η(Ut), ξt+1⟩ − γ2∥ξt+1∥2F
(
(L2

1H + 2L2H)∥C∥∞ + 2(η + 2τ)−1L2
1∥C∥2∞

)
. (20)

Recall that gradfη(Ut) = PTUtSt
(∇fη(Ut)) and ξt+1 = PTUtSt

(2Vπt+1Ut), we have

⟨∇fτ,η(Ut), ξt+1⟩ = ⟨gradfτ,η(Ut), ξt+1⟩ = ∥gradfτ,η(Ut)∥2F + ⟨gradfτ,η(Ut), ξt+1 − gradfτ,η(Ut)⟩.

Using Young’s inequality, we have

⟨∇fτ,η(Ut), ξt+1⟩ ≥
1

2

(
∥gradfτ,η(Ut)∥2F − ∥ξt+1 − gradfτ,η(Ut)∥2F

)
.

Furthermore, we have ∥ξt+1∥2F ≤ 2
(
∥gradfτ,η(Ut)∥2F + ∥ξt+1 − gradfτ,η(Ut)∥2F

)
. Putting these pieces together with

Eq. 20 yields that

fτ,η(Ut+1)− fτ,η(Ut) ≥γ
(
1

2
− γ(2L2

1H∥C∥∞ + 4L2H∥C∥∞ + 4(η + 2τ)−1L2
1∥C∥2∞)

)
∥gradfτ,η(Ut)∥2F

− γ

(
1

2
+ γ(2L2

1H∥C∥∞ + 4L2H∥C∥∞ + 4(η + 2τ)−1L2
1∥C∥2∞)

)
∥ξt+1 − gradfτ,η(Ut)∥2F .

(21)
Since ξt+1 = PTUtSt

(2Vπt+1Ut) and gradfτ,η(Ut) = PTUtSt
(∇τ, η(Ut)) where π∗

t is the minimizer of the entropic
regularized UOT problem, i.e. π∗

t ∈ argminπ∈Π(H)

{
⟨UUT , Vπ⟩+ τKL(π1n∥r) + τKL(πT1n∥c)− ηH(π)

}
, we have

∥ξt+1 − gradfτ,η(Ut)∥F ≤ 2∥(Vπt+1
− Vπ∗

t
)Ut∥F = 2∥(Vπt+1

− Vπ∗
t
)∥F .

By the definition of Vπ and using the stopping criterion: ∥πt+1 − π∗
t ∥1 ≤ ϵ̂ = ϵ2

10∥C∥∞
, we have

∥(Vπt+1
− Vπ∗

t
)∥F ≤ ∥C∥∞∥πt+1 − π∗

t ∥1 ≤
ϵ2
10

.

Putting these pieces together yields that
∥ξt+1 − gradfτ,η(Ut)∥F ≤

ϵ2
5
. (22)

Plugging Eq. 22 into Ept. 21 with the definition of γ yields that

fτ,η(Ut+1)− fτ,η(Ut) ≥
γ∥gradfτ,η(Ut)∥2F

4
− 3γϵ2

2

100
.

Summing and rearranging the resulting inequality yields that

1

T

(
T−1∑
t=0

∥gradfτ,η(Ut)∥2F

)
≤ 4(fτ,η(Ut)− fτ,η(U0))

γT
+

3ϵ2
2

25
.

Lemma 7.6 Consider a sphere set S = {x ∈ Rd|}

Theorem 7.1 Letting {(UT , π
T )}T≥1 be the iterates generated by Algorithm RGAS-UOT, the number of iterations re-

quired to reach dist(0, subdifff(UT )) ≤ ϵ1 satisfies that

T ≤ 100∆f

(25ϵ12 − 3ϵ22)γ
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Proof:

Given that ∥gradfτ,η(Ut)∥F > ϵ1 for all t = 0, 1, . . . , T − 1 and combine the inequality with Lemma 7.5 , we have

1

T

(
T−1∑
t=0

∥gradfτ,η(Ut)∥2F

)
≤ 4∆f

γT
+

3ϵ2
2

25

Also,

1

γ
= (8L2

1H + 16L2H)∥C∥∞ + 16(η + 2τ)−1L2
1∥C∥2∞

= H(8L2
1 + 16L2)∥C∥∞ + 16L2

1∥C∥2∞ ·
(
min

{
ϵ2

S +D
,
1

2
,

τ

4 log (n)
,

τ

4(α+ β) log (n))
,

ϵ1
40 log (n)

}
+ 2τ

)−1

.

We conclude that the upper bound T must satisfy

25ϵ1
2 − 3ϵ2

2

≤ 100∆f

T

(
H(8L2

1 + 16L2)∥C∥∞ + 16L2
1∥C∥2∞ ·

(
min

{
ϵ2

S +D
,
1

2
,

τ

4 log (n)
,

τ

4(α+ β) log (n))
,

ϵ1
40 log (n)

}
+ 2τ

)−1
)
.

Using Lemma 7.4, we have

∆f ≤
(
H∥C∥∞ +

2∥C∥2∞
η + 2τ

)(
max

U∈St(d,k)
∥U1 − U2∥2F

)
+ 2H∥C∥∞

(
max

U∈St(d,k)
∥U1 − U2∥2F

)
= k ·

(
6H∥C∥∞ +

4∥C∥2∞
η + 2τ

)
= k ·

(
6H∥C∥∞ + 4∥C∥2∞ ·

(
min

{
ϵ2

S +D
,
1

2
,

τ

4 log (n)
,

τ

4(α+ β) log (n))
,

ϵ1
40 log (n)

}
+ 2τ

)−1
)

Putting these pieces together implies the desired result.

7.1 Additional Experiments

D G I KB1 KB2 TM T
D 0.000 0.120 0.131 0.152 0.161 0.133 0.101
G 0.120 0.000 0.096 0.145 0.156 0.090 0.126
I 0.131 0.096 0.000 0.143 0.153 0.092 0.129

KB1 0.152 0.145 0.143 0.000 0.088 0.144 0.125
KB2 0.161 0.156 0.153 0.088 0.000 0.147 0.131
TM 0.133 0.090 0.092 0.144 0.147 0.000 0.132
T 0.101 0.126 0.129 0.125 0.131 0.132 0.000

Table 3: Each entry is S2k/P2
k distance between different movie scripts. D = Dunkirk, G = Gravity, I = Interstellar, KB1 =

Kill Bill Vol.1, KB2 = Kill Bill Vol.2, TM = The Martian, T = Titanic

Ability to capture the dimension of sampled measures Figure ?? presents the behavior of P2
k(µ̂, ν̂) as a function of

k∗ ∈ {2, 4, 7, 10}, where m̂u, n̂u are empirical distributions corresponding to µ and ν, respectively. The sequence is
concave and increases slowly after k = k∗ for both algorithms, which is reasonable since the last d− k∗ dimensions only
represent noise. We see that the solutions of both the RBCD-UOT and the RGAS-UOT algorithms achieve almost the same
quality.

Comparing RGAS-UOT and RBCD-UOT We also compare the computational time of the two different PRUOT algo-
rithms, RGAS-UOT and RBCD-UOT. We fix k=k=2, and generate the Fragmented Hypercube with varying n, d. 5 - 8
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0 1 2 3 4 5 6 7 8 9
0 0.00/ 0.00 0.79/ 0.97 0.60/ 0.80 0.90/ 1.20 0.90/ 1.23 0.71/ 1.03 0.60/ 0.81 0.66/ 0.86 0.77/ 1.06 0.80/ 1.09
1 0.79/ 0.97 0.00/ 0.00 0.52/ 0.66 0.70/ 0.86 0.53/ 0.68 0.68/ 0.84 0.65/ 0.80 0.47/ 0.58 0.70/ 0.88 0.69/ 0.85
2 0.60/ 0.80 0.52/ 0.66 0.00/ 0.00 0.53/ 0.73 0.78/ 1.08 0.81/ 1.08 0.69/ 0.90 0.51/ 0.70 0.51/ 0.68 0.79/ 1.07
3 0.90/ 1.20 0.70/ 0.86 0.53/ 0.73 0.00/ 0.00 0.89/ 1.20 0.43/ 0.58 0.93/ 1.23 0.55/ 0.72 0.64/ 0.88 0.64/ 0.83
4 0.90/ 1.23 0.53/ 0.68 0.78/ 1.08 0.89/ 1.20 0.00/ 0.00 0.76/ 1.00 0.61/ 0.85 0.62/ 0.79 0.75/ 1.09 0.38/ 0.49
5 0.71/ 1.03 0.68/ 0.84 0.81/ 1.08 0.43/ 0.58 0.76/ 1.00 0.00/ 0.00 0.52/ 0.72 0.70/ 0.91 0.54/ 0.72 0.58/ 0.78
6 0.60/ 0.81 0.65/ 0.80 0.69/ 0.90 0.93/ 1.23 0.61/ 0.85 0.52/ 0.72 0.00/ 0.00 0.83/ 1.11 0.66/ 0.92 0.81/ 1.22
7 0.66/ 0.86 0.47/ 0.58 0.51/ 0.70 0.55/ 0.72 0.62/ 0.79 0.70/ 0.91 0.83/ 1.11 0.00/ 0.00 0.71/ 1.07 0.46/ 0.62
8 0.77/ 1.06 0.70/ 0.88 0.51/ 0.68 0.64/ 0.88 0.75/ 1.09 0.54/ 0.72 0.66/ 0.92 0.71/ 1.07 0.00/ 0.00 0.61/ 0.87
9 0.80/ 1.09 0.69/ 0.85 0.79/ 1.07 0.64/ 0.83 0.38/ 0.49 0.58/ 0.78 0.81/ 1.22 0.46/ 0.62 0.61/ 0.87 0.00/ 0.00

Table 4: Each entry is scaled S2k/P2
k distance between different hand-written digits.

show the comparison for different algorithms with different (n, d) pairs. All the reported CPU times are in seconds. We
run each n, d pair for 50 times and take the average. From Tables 1 - 4, we see that our RBCD-UOT algorithm runs faster
than the RGAS-UOT algorithm in all cases. Moreover, we found that the advantage of RBCD-UOT over RGAS-UOT is
more significant when n is relatively larger than d.

Table 5: CPU time for calculating PRUOT of the fragmented hypercube problem. We set n = 100
DIMENSION d 20 50 100 250 500

RBCD-UOT 0.64 0.66 0.80 2.84 5.58
RGAS-UOT 1.58 2.02 2.31 5.64 7.01

Table 6: CPU time for calculating PRW of the fragmented hypercube problem. We set d = 50.
n 50 100 250 500 1000

RBCD-UOT 0.15 0.68 2.49 4.06 9.60
RGAS-UOT 0.38 2.16 8.61 8.71 14.28

Table 7: CPU time for calculating PRUOT of the fragmented hypercube problem. We set n = d.
DIMENSION d 10 20 50 100 250

RBCD-UOT 0.13 0.08 0.11 0.76 10.37
RGAS-UOT 0.29 0.30 0.39 2.39 27.11

Table 8: CPU time for calculating PRUOT of the fragmented hypercube problem. We set n = 10d.
DIMENSION d 10 20 50 100 250

RBCD-UOT 0.48 5.68 3.49 11.01 174.26
RGAS-UOT 1.30 7.34 8.10 16.64 253.29
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