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Abstract

Subgraph augmentation is a widely used method
for graph classification when the original graph can
not be efficiently distinguished for the network.
With the rapid development of message-passing
graph neural networks (MPNN), many MPNN ar-
chitectures are designed to process graphs aug-
mented by their subgraphs. In this work, we present
a new subgraph sampling strategy EGO+WL based
on Weisfeiler-Lehman similarity. It achieves su-
perior classification accuracy on TU datasets com-
pared to the existing state-of-the-art strategies. It
further reduces the space complexity up to 55%
on dataset IMDB-MULTI compared to the sec-
ond best strategy and reduces 10-20% training
time on dataset NCI1. The code is available at
https://github.com/YistYU/ESAN_WLS.

1 Introduction

Message-Passing Neural Networks (MPNNs) are the leading
Graph Neural Network (GNN) architecture for deep learn-
ing because of their strong simplicity. However, [

I [ ] have shown that these architec-
tures are at most expressive as the Weisfeiler-Lehman (WL)
graph isomorphism test ([ 1). The
WL test [ ] is a classic algorith-
mic test of graph isomorphism, possibly with categorical
node attributes. Although the proposed version of the algo-
rithm is parameterized by dimension %, we only explain the
1-dimensional case, which is mostly discussed in machine
learning architectures.

Suppose we have two graphs G and G’, as shown in Figure
1, and we want to determine whether they are isomorphic. In
essence, the algorithm augments node labels by sorting neigh-
bor node labels and compresses augmented labels into short
labels. The steps are repeated until G and G’ node label sets
differ, or the number of iterations reaches a maximum num-
ber. In Figure 1, we take graph GG as an example. We set
f(v) = 1for all v € V(G) if G has no node attributes. We
then update the node attributes in stages and each node is up-
dated once only. The updated attribute is the pair of its own
attributes and the attributes of its neighbors. For further iter-

ations, the new attributes may be re-labeled via an injective
mapping, i.e., (1,{1,1}) — 2and (1,{1,1,1}) — 3.

After a fixed number of iterations, we compare the set of
resulting attributes to that from another graph. If two sets
differ, then the two graphs are non-isomorphic and are dis-
tinguishable by the WL-test. Otherwise, the two graphs are
isomorphic by the 1-WL test. Many indistinguishable non-
isomorphic pairs of graphs exist. As a consequence, MPNNs
cannot distinguish between very simple graphs.
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Figure 1: A pair of graphs not distinguishable by the WL test.

To address this limitation, many efforts have been paid to
work on improving the expressiveness of MPNNs. In gen-
eral, the architectures can be clustered into three categories in
enhancing the expressive power of GNNs: (1) Augmenting

node features with different identifiers ([ 1; [
1 [ 1); (2) Aligning
to the k-WL hierarchy ([ Il

1); (3) Leveraging on structural information, i.e., sub-
graphs, that cannot be captured by the WL test ([
It LI I;
[ 1). Bevilacqua et.al. presented Equivari-
ant subgraph aggregation networks (ESAN) which belongs to
the category (3) with non-domain specific policies [

1. ESAN represented each graph as a bag of
subgraphs chosen according to some predefined policy. In
detail, they presented four strategies as the baselines: node-
deleted subgraphs (ND), edge-deleted subgraphs (ED), and
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ego-networks (EGO, EGO+) as demonstrated next. In the
node-deleted policy, a graph is mapped to the set containing
all subgraphs that can be obtained from the original graph by
deleting a single node. Similarly, the edge-deleted policy is
defined by deleting a single edge. The ego-networks policy
EGO maps each graph to a set of ego-networks of some spec-
ified depth, one for each node in the graph (a k-Ego-network
of a node is its k-hop neighborhood with the induced con-
nectivity). They also consider a variant of the ego-networks
policy where the center node holds a feature that is different
from other nodes (EGO+).

However, their approach is related to multiple techniques
in graph learning. For example, DropEdge is a semi-
supervised classification architecture that can be considered
as a stochastic version of the Edge-deleted policy ([

1). Ego-GNNs resemble the EGO policy, as mes-
sages are passed within the ego-net of each node, and are ag-
gregated from the ego-net that a node is contained in ([

1). ID-GNNSs can be seen as a variation of
the EGO+ policy, the difference being the way in which the
root node is identified and the way the information between
the ego-nets is combined ([ 1). FactorGCN,
which learns the subgraphs containing edges that capture la-
tent relationships, is a model that disentangles relations, es-
pecially for graph data ([ D).

We can find that the current subgraph sampling strategies
are mostly in a very trivial manner. For gigantic datasets, it
could be extremely costly if all the subgraphs are preserved
and processed by the existing strategies. In our work, we
present subgraph sampling strategies EGO+WL which effi-
ciently select the most representative subgraphs for network
training. This paper offers the following main contributions:

(1) We propose new graph sampling strategies EGO+WL
based on WL similarity which shows up to 3% improvement
in the graph classification accuracy on TU datasets.

(2) EGO+WL has a lower space complexity and time com-
plexity. Our method reduces up to 55% GPU memory con-
sumption and 10-15% network training time compared to the
second-best strategy on TU datasets.

(3) EGO+WL can efficiently select the most representative
subgraphs. It achieves superior performance than baseline
methods using only 50% subgraphs while the baseline meth-
ods use all the subgraphs for training.

2 Preliminaries

In this section, we present how to formulate the subgraph
sampling problem in our work and the vector representation
of a (multi-)set.

2.1 Problem formulation

We assume a standard graph classification setting. We repre-
sent a graph with n nodes as a tuple G = (V, A, X') where V/
is the set of nodes of G, A € R™*"™ is the graph adjacency
matrix and X € R"*¢ is the node feature matrix. We assume
each node v € V is assigned an artribute f(v), which is ei-
ther a categorical variable from a finite set or a vector in R
If we update the attribute on v, the original attribute is written
as y°(v) and the successively updated ones as y'(v), y?(v),

etc. The set of nodes adjacent to v is denoted as A/ (v). The
edge that connects u and v is denoted as uv. We denote the
concatenation operator as . We write a multiset as a set in the
following discussion.

The main idea behind the subgraph sampling strategy is to
represent the graph G as a bag S¢ = {G1,Ga,...,Gp} of
its subgraphs. Let G be the set of all graphs with n nodes
or less, and let P(G) be its power set, i.e., the set of all
subsets S € G. A subgraph selection policy is a function
m : G — S(G) that assigns to each graph G a subset of
the set of its subgraphs 7(G). We require that 7 is invari-
ant to permutations of the nodes in the graphs, namely that
7(G) = 7(o - G), where o € S, is a node permutation, and
o - G is the graph obtained after applying o.

2.2 Representation of a multiset

Given sets of points X = {z;};", and Y = {y;}_,. Next,
we will represent a set of vectors by the sum of the vectors af-
ter applying feature map which is a transformation. Suppose
K : R4 x R* — R is a function between X and Y, i.e., the

Gaussian kernel exp (M) .

Definition 2.1. Function K is a positive definite kernel (PD
kernel) if, for any constants {c;}.—_, and points {x;}!_, in
R4, we have Y, > cici K (zi, x5) > 0.

With a PD kernel and an associated Hilbert space H, we
can define the feature map as the following:

Definition 2.2. A PD kernel K has an associated reproduc-
ing kernel Hilbert space H with feature map ¢ : R? — H

such that
K(z,y) = (¢(z), 6(y))

forall z,y € RY, where (,) denotes the inner product on H.

A PD kernel K with feature map ¢ can output a distance or
pseudo-distance d- on R?, which is defined by d2 (z,y) =
l6(a) —6(v)|2, = (6(2)— 6(y). 6(x) — 6()) = K (a,2) —
2K (x,y) + K(y,y)-the induced distance Dy is in the same
manner defined as

DR(X,Y)=> > K(xa2)-2) > Ky

zeX x'eX zeX yey
+ Z Z K(y,y') (1)
yeY y’'eyY
=1 > o(x) - > o>
reX yey

Hence, ¢(X) = >, ¢(x;) represents set X independently
of Y, and the set distance Dg can be computed using the
distance between the representation vectors. If points z;
and y; are associated with weights v; and w; in R, replac-
ing K(x;,y;) with v;w; K (z;,y;), we can obtain ¢(X) =
> vid(xi) and ¢(Y) = 37 w;d(y;) similarly.

Remark 2.1. For many known kernels, the explicit feature
maps are unclear or infinite-dimensional [ ]. How-
ever, for an arbitrary map ¢ : R4 — RP, there is an as-
sociated set similarity using the representation map ¢(X) =

Y wex ¢(x) when walking backward.
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Figure 2: The architecture of EGO+WL subgraph sampling strategy. Tt selects the most representative subgraphs from a bag of k-ego
subgraphs from the original graph, input them into the WL similarity network and cluster these embedding points by K-means clustering
algorithm. With the clustered results, we extract only the centroid subgraphs from the algorithm and input them to the ESAN training

architecture.

3 Method

In this paper, we explore a more advanced subgraph selec-
tion strategy that proves to strike a good balance between
complexity (the number of subgraphs) and the resulting ex-
pressive power: Ego network under WL similarity kernel
(EGO+WL), as described next. Intuitively, it selects the most
representative subgraphs from a bag of k-ego subgraphs from
the original graph. We utilize the WL similarity network to
obtain the subgraph representation embeddings, build the ad-
jacency matrix between these embeddings pairwisely by their
Euclidean distance, and cluster these embedding points by K-
means clustering algorithm. With the clustered results, we
extract only the centroids from the algorithm and input them
into the ESAN training architecture. Next, we will go through
the details of each stage.

Algorithm 1 Updating node attributes in Weisfeiler-Leman
similarity [ ]
Input: Graph G, nodes V, initial attributes y°(v) for
v € V, iteration number k, and feature maps ¢; for ¢ =
1,2,... k.

1: for i from 1 to k do

2. forveVdo

3 9 (v) < di(y" ™ (v));

4 J'(v) < Xuenw 9'(w);

5: y'(v) < COMBINE; (y'~!(v),9*(v)).
6
7
8:

return Updated attributes y*(v) forv € V.

Weisfeiler-Leman similarity network After obtaining the
k-ego subgraphs, we borrow the idea from OK ez.al. as shown

in algorithm 1 which iteratively update the node attributes us-
ing the neighbors’ information [ 1. The focus of this
algorithm is to reflect the similarity between the sets of neigh-
bors’ attributes into the node-wise updated attributes via the
set representation vector. Feature maps ¢; can be ones from
well-known kernels or problem-specific functions. If we use
the concatenation as COMBINE;, in Algorithm 1, because

ly* (v) =y @)1 =lly"™ () =y~ ()]
+ 1 (0) = f()I1%,

i—1

2)

both the similarities between y and between the sets of
neighbors’ attributes contributed to y(v). After the update
of every node, they keep the set of updated attributes. We
use a graph neural network (GNN) to update the node at-
tributes based on WL similarity which is equipped with three
layers. Each layer consists of a linear transformation, a 1D
normalization and a activate function (i.e., ReLU). We input
the adjacency matrices as well as the node feature matrices
of the subgraphs into the network and obtain the graph latent
representations (21, za, ..., 2y ) for N graphs based on WL
similarity.

K-means clustering The WL-similarity network outputs
the embeddings of the subgraphs. To compare two graphs G
and G, we measure the Euclidean distance between { f*(v) :
v € V(G)} and {f*(v') : v € V(G')} using Gaussian
kernel. Then we cluster them by K-means algorithm [

1. Given the set of m subgraph embeddings
(x1,%2,...,%m), Where each of them is a d-dimensional
real vector, we use K-means to partition the n embeddings
into g(< m) sets S = {S1,5%,...,5} to minimize the
within-cluster sum of squares (i.e. variance). Formally, the
objective is to minimize the pairwise squared deviations of
points in the same cluster, or equivalently, to maximize the



Table 1: TUDatasets. Red text indicates the highest classification accuracy for each category. SoTA line reports results for the best-performing

model for each dataset.

Method | / Dataset — MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

SoTA 92.7£6.1 682+£72 T77.2+47 836+14 840£16 | 77.8+33 | 54.3+3.3
GIN (Xu et al., 2019) 894+£56 646+£7.0 762+28 82.7+17 822£16 | 75.1+5.1 | 52.3+2.38
DS-GNN (GIN) (ED) 899+£37 660+£72 T76.8+46 833+25 830£17 | T76.1+£26 |529+24
DS-GNN (GIN) (ND) 89.4+£48 66370 77.1+46 83.8+24 824£13 | 754%£29 | 52.7+£20
DS-GNN (GIN) (EGO) 899+£65 686+£58 76758 81.4+07 795£1.0 | 76.1+28 | 52.6 2.8
DS-GNN (GIN) (EGO+) 91.0+4.8 68770 76744 820£14 803+£09 | 77.1£26 | 53.2£28
DS-GNN (GIN) (EGO+WL) | 89.9£5.7 688458 759+41 839407 81.8+20 | 77.0+£2.5 | 53.5+2.2
DSS-GNN (GIN) (ED) 91.0£48 66.6+£7.3 75.84+45 834425 828+£09 | 76.8+43 | 53.5+34
DSS-GNN (GIN) (ND) 91.0£35 663+£59 761+34 836+15 83.1+£08 | 76.1+29 |53.3+19
DSS-GNN (GIN) (EGO) 91.0+4.7 682+£58 76741 83.6=%x1.8 825+1.6 | 76.5£28 | 53.3+£3.1
DSS-GNN (GIN) (EGO+) 91.1+£7.0 69.2+65 759+43 83.7£18 828+£12 | 77.1£3.0 | 53.2+24
DS-GNN (GIN) (EGO+WL) | 904+4.3 71.4+57 76.6+33 844+13 835+£23 | 781=£3.1 | 54.7£0.7

sum of squared deviations between points in different clus-
ters (between-cluster sum of squares):

g
1
argminz — Z x — yl|?.
S i=1 |S7| X,yES;

Take the centroids of clusters By default, we set g to be
half number of the subgraphs. With the g clusters from K-
means, we take the centroid points of the clusters and input
the subgraphs they represent to the ESAN network for train-
ing. We input up to 50% of the subgraphs from the full bag to

the network to reduce the space complexity for computing.

4 Experiments

We perform an extensive set of experiments to answer
whether our approach is more expressive than the existing
graph sampling strategy in practice and whether our approach
decreases the time complexity and space complexity com-
pared to the existing graph sampling strategy in practice.

Table 2: Details of the TU datasets. We list their number of graphs,
number of label classes, number of nodes and number of edges. For
the number of nodes and edges, their values are both in thousand.

Dataset # Graphs # Classes # Nodes # Edges
MUTAG 188 2 979 2025
PTC 344 2 1429 14.69
PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 323
NCI109 4127 2 29.8 3213
IMDB-BINARY| 1000 2 19.77  96.53
IMDB-MULTI | 1500 3 13.00 6594

4.1 Experiment settings

We use the same architecture as ESAN [
] and compare our strategy with the proposed

strategies in their work as the baselines: node-deleted
subgraphs (ND), edge-deleted subgraphs (ED), and ego-
networks (EGO, EGO+). In the paper of ESAN, they pre-
sented two architectures DSS-GNN and DS-GNN [

]. We experimented with popular datasets
from the TUD repository [ 1. We evalu-
ated both DSS-GNN and DS-GNN on all the TUDatasets.
We followed the widely-used hyperparameter selection and
experimental procedure proposed by [ 1.

4.2 Graph classification performance on
TUDatasets.

We conducted 10-fold cross validation and reported the val-
idation performances at the epoch achieving the highest av-
eraged validation accuracy across all the folds. We used the
Adam optimizer with learning rate that decayed by a factor of
0.5 every 50 epochs. The training is stopped after 350 epochs.
As for DS-GNN, we implemented Ry pgraphs With summa-
tion over node features, while module F;.;, is parameterized
with a two-layer DeepSets with final mean readout. In DSS-
GNN, we considered the mean aggregator for the feature ma-
trix and use the adjacency matrix of the original graph. We
implemented Rgypgraphs by averaging node representations
on each subgraph. We considered the baseline model GIN
[ ]. The results are reported in Table 1 where
the best performing method for each dataset is reported as
SoTA (State-of-The-Art).

In the table, the best performance for each model From
the results, we can find that EGO+WL outperforms other
strategies. In dataset PTC, NCI1 and IMDB-MULTIPLE, it
achieves superior performance compared to other strategies.
Worth to mention that, our strategy only utilized half of the
subgraphs but had a better performance in practice.

4.3 Space complexity
For the space complexity, we focus our comparison on TU
datasets between EGO+ and EGO+WL. We used GIN as the

base encoder and record the peak percentage of utilized GPU
memory during the training on an RTX3080Ti GPU with 20G



Table 3: GPU memory allocation percentage of the process. Run
on RTX3080Ti with 20G GPU memory. The highlighted entries
corresponding to the different datasets are the results of the strategy
that achieves lower space complexity.

EGO+ EGO+WL

MUTAG 30.38% 30.60%

PTC 15.01% 14.29%
PROTEINS 65.2% 47.9%
NCI1 9.0% 6.4%
NCI109 16.0% 17.3%
IMDB-BINARY | 21.1% 9.6%
IMDB-MULTI 26.0% 11.5%

GPU memory. We kept the hyperparameters the same for
all methods to allow a fair comparison. Results are reported
in Table 3. As can be seen in the table, our strategy can
mostly reduce memory consumption and achieves a 55% re-
duction on IMDB-MULTTI and IMDB-BINARY compared to
the overall best baseline strategy: EGO+. It is observed that
on dataset NCI109 and MUTAG, our strategy used slightly
more spaces compared to EGO+, it might be caused by the
highly repeated k-ego graphs as EGO+WL takes all the cen-
troids subgraphs of the same topology from the full subgraph
bag. If the topology of the selected centroids subgraphs is
highly repeated, this strategy will hardly showcase its effi-
ciency.
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Figure 3: Timing comparison per epoch on an RTX3080 GPU. Time
is taken for a single epoch with batch size 32 on the NCI1 dataset.
All values are in seconds.

4.4 Time complexity

We focus our analysis on the NCI1 dataset from [Morris er
al., 2020] (4110 graphs, 30 nodes/edges per graph on aver-
age) and estimated the time to perform a single training epoch
on an RTX 3080 GPU. We used GIN as a base encoder and

compared the times of DS-GNN and DSS-GNN without sam-
pling. We kept the hyperparameters the same for all methods
to allow a fair comparison. Note that these times consider
a single process completing a single training epoch. In our
implementation, we perform the cross validation in parallel,
making use of multiprocessing. Results are reported in Fig-
ure 3. As can be seen in the table, our method reduces these
times by 10-15%, showcasing how our EGO+WL strategy
can be beneficial in practice.

5 Discussion

To summarize, we present a new subgraph sampling strategy
EGO+WL based on WL similarity. EGO+WL achieves over-
all superior graph classification performance on TU datasets
with fewer subgraphs, lower space complexity, and time
complexity for an equivariant subgraph aggregation network.
Even though the strategy efficiently accelerates the training
of ESAN, its time complexity still cannot be the most opti-
mal since it maps the embeddings to the Gaussian kernel and
computes the distance between float points.

In the future, we are thinking to replace the kernel from the
WL similarity kernel with WL subtree kernel [Shervashidze
et al., 2009]. The WL subtree kernel maps a graph to a vector
representation in a discrete manner. Inspired by this, we are
working on another strategy EGO+WLSubtree as an updated
version for EGO+WL. Since the subgraph embeddings from
the WL subtree kernel will be discrete, we can compute the
Hamming distance between them and formulate the problem
as a graph encoding problem. Each subgraph can be seen as
a “code” of the original graph and all the subgraphs form a
“codebook”. There might have a large space for the theorems
in Coding Theory to be applied in this problem formulation.
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